

Welcome to OmpCluster’s documentation!

Contents:

	Programming applications
	Execute code on a target device

	Manage the device data environment

	Asynchronous target task

	Task dependencies

	Data environment

	Asynchronous target data task

	Basic Usage
	Compile and run programs

	Container

	Examples
	First example

	More examples

	Profiling
	Collecting a trace

	Inspecting the trace

	Filter usage

	OmpTracing usage

	Debugging
	Single Process Execution

	Runtime Information

	The GNU Debugger (GDB)

	The LLVM Debugger (LLDB)

	Debugging with TMPI

	Common Errors

	Advanced Usage
	Tuning

	Environment variables

	OMPC PLASMA
	Building

	Usage

	Example

	OmpTracing
	Usage

	Tracing

	Task Graph

	Configuration

	Tagging

Indices and tables

	Index

	Module Index

	Search Page

Programming applications

This page presents how to program OpenMP tasks based applications for
distributed systems using the OmpCluster runtime.

For more details about the OpenMP directives, you can consult the specification
of OpenMP [https://www.openmp.org/specifications/].

OmpCluster relies on the application programming interface defined by
OpenMP. It uses directives to program remote processes running on computer
clusters with distributed memory architectures.

Between the Device Constructs that we use in this project, we have:

Execute code on a target device

omp target [clause[[,] clause],...] structured-block
omp declare target [function-definitions-or-declarations]

Manage the device data environment

This construction allows you to transfer data between the host (the head
process) and the devices (the worker nodes), where the target regions will be
executed.

map ([map-type:] list) map-type := alloc | tofrom | to | from | release | delete

If map-type is to or tofrom, this new item is initialized with the value
of the original list item in list in the host data environment.

#pragma omp target \
 map(to:...) \
 map(tofrom:...)
{
 ...
}

If map-type is from or alloc, the initial value of the list item
in the device data environment is undefined.

#pragma omp target \
 map(from:...) \
 map(alloc:...)
{
 ...
}

Asynchronous target task

nowait clause eliminates the implicit barrier so the parent task can make
progress even if the target task is not yet completed. By default, an implicit
barrier exists at the end of the target construct, which ensures the parent task
cannot continue until the target task is completed.

#pragma omp target nowait
{
 ...
}

Task dependencies

depend(dependence-type:list) establishes scheduling dependencies between the
target task and sibling tasks that share list items. The dependence-type can be
in, out, or inout.

If dependence-type is in or inout, a scheduling dependence for the
target task on the sibling task is created. Where the task that we are creating
depends that the data inserted in the clause in or inout is ready.

#pragma omp target nowait \
 depend(in:...) \
 depend(inout:...)
{
 ...
}

If dependence-type is out or inout, a scheduling dependence for the target
task on the sibling task is created. Where the task we are creating will
generate the outputs described in the out and inout clause.

#pragma omp target nowait \
 depend(out:...) \
 depend(inout:...)
{
 ...
}

Data environment

firstprivate(list) declares the data variables in list to be private to
the target task and shared by every thread team that runs the region. A new item
is created for each list item that is referenced by the target task. Each new
data variable is initialized with the value of the original variable at the time
the target construct is encountered.

#pragma omp target nowait \
 firstprivate(list)
{
 ...
}

Asynchronous target data task

Target data tasks are basically tasks dedicated to communication between the head
process and the worker processes.

Those type of tasks allows the programmer to describe data to be send to the worker
processes with a larger life scope. Indeed, the data will stay alive in the worker
processes between the enter and the exit directive. By using those, the
OMPC runtime will be able to optimize the communication within the worker processes.

Here is an example:

It is important to point out that every target tasks which is going to use a data
sent by a target data task must use that first position of the array as a dependency.
This differs from the OpenMP standard but is compulsory for the OMPC runtime to be
able to keep track of the data used by the target tasks and manage the communication
between worker processes correctly.

If the dependencies are not set correctly (pointing to the first position of the value)
the execution of the program will most probably fail on a segfault.

Basic Usage

Compile and run programs

Compiling OpenMP code for OmpCluster requires to use a specific OpenMP target
x86_64-pc-linux-gnu which indicates to the compiler to compile the OpenMP
target code region for a device. For example, the mat-mul example can be
compiled using the following command:

clang -fopenmp -fopenmp-targets=x86_64-pc-linux-gnu mat-mul.cpp -o mat-mul

Then, you can run the newly created program but, contrary to classical OpenMP
programs, programs need to be executed using mpirun or mpiexec tools to
use the OmpCluster distributed task runtime just as any other MPI program:

mpirun -np 3 ./mat-mul

In this case, the runtime will automatically create 3 MPI processes (one head
and two workers): the head process will offload OpenMP target regions to be
executed on the workers following the currently implemented scheduling strategy.

The runtime also supports the offloading to remote MPI processes (located on
other computers or containers), those can be configured using the -host or
-hostfile flags of mpirun (note that flags may differ between MPI
implementations). However, just as any MPI programs, the user needs to copy the
binary on all computers/containers before executing it (using pdcp command
or NFS directory).

As you might have noticed, it is somehow hard to follow what the OmpCluster
runtime is doing when executing the application. You can enable information
messages from the runtime by setting the following command when running the
program:

LIBOMPTARGET_INFO=-1 mpirun -np 3 ./mat-mul

Container

To easily experiment with the OmpCluster tools, we provide a set of
docker images [https://hub.docker.com/r/ompcluster/] containing a pre-compiled Clang/LLVM with all
necessary OpenMP and MPI libraries to compile and run any OmpCluster programs.

All our images are based on Ubuntu 20.04. However, different configurations are
available with different versions of CUDA, and MPICH or OpenMPI. Choose the
docker image tag according to your favorite configuration or latest to use the
default configuration.

You can execute your applications with the OmpCluster runtime on any computer
using docker and the following command:

docker run -v /path/to/my_program/:/root/my_program -it ompcluster/runtime:latest /bin/bash
cd /root/my_program/

This flags -v is used to share a folder between the operating system of the
host and the container. You can get more information on how to use Docker in the
official Get Started [https://docs.docker.com/get-started/] guide).

You can also use Singularity, using the following commands for example:

singularity pull docker://ompcluster/runtime:latest
singularity shell ./runtime_latest.sif
cd /path/to/my_program/

See here [https://sylabs.io/guides/3.2/user-guide/] for more information about Singularity. Note that
some cluster environments may have the new Singularity version that is called
Apptainer [http://apptainer.org/docs/user/latest/].

Cluster job manager execution

The OmpCluster runtime can be used with a cluster job manager, like Slurm. After compiling your code
using a container, you can launch the job as any MPI program. For example, using Slurm:

srun -N 3 --mpi=pmi2 singularity exec ./runtime_latest.sif ./my_program

Every job manager suport many configurations. For example, you can refere to the
Slurm documentation [https://slurm.schedmd.com/quickstart.html].

Existing images and configurations

The container images that we provide follows this naming convention:
ompcluster/<image_name>:<tag>.

Several images are available on our docker-hub repository, here is a tentative
to list them:

	hpcbase: the base image for all other containers. It contains the MPI
implementation, CUDA, Mellanox drivers, etc.

	runtime: this image contains the pre-built Clang and OmpCluster
runtime based on the stable releases.

	runtime-dev: this image contains the pre-built Clang and OmpCluster
runtime based on the Git repository. This version should be considered as
unstable and should not be used in production.

	Application-specific images (awave-dev, beso-dev, plasma-dev, etc):
Those images are based on the runtime image but contains additional libraries
and tools required to develop some applications.

Examples

First example

To better understand this model, we make an example with block-based
matrix multiplication. Given two matrices, the program will multiply them and produce a new matrix.

If there are two input matrices A and B of size N and the output matrix
C. The multiplication of matrices A and B can be performed using the following code:

void MatMul(int &A, int &B, int &C) {
 for (int i = 0; i < N; ++i){
 for (int j = 0; j < N ; ++j) {
 C[i][j] = 0;
 for (int k = 0; k < N ; ++k) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
 }
}

[image: matrix-multiplication-good]
matrix-multiplication-good

It is possible to use a block partitioned matrix product that involves
only algebra on submatrices of the factors. The partitioning of the
factors is not arbitrary, however, and requires conformable partitions
between two matrices A and B such that all submatrix products that
will be used are defined.

The following figure shows the block-based matrix multiplication.

[image: block_multiplication]
block_multiplication

In this case, the code would be:

void BlockMatMul(BlockMatrix &A, BlockMatrix &B, BlockMatrix &C) {
 // Go through all the blocks of the matrix.
 for (int i = 0; i < N / BS; ++i)
 {
 for (int j = 0; j < N / BS; ++j)
 {
 float *BlockC = C.GetBlock(i, j);
 for (int k = 0; k < N / BS; ++k) {
 float *BlockA = A.GetBlock(i, k);
 float *BlockB = B.GetBlock(k,j);
 // Go through the block.
 for(int ii = 0; ii < BS; ii++)
 for(int jj = 0; jj < BS; jj++) {
 for(int kk = 0; kk < BS; ++kk)
 BlockC[ii + jj * BS] += BlockA[ii + kk * BS] * BlockB[kk + jj * BS];
 }
 }
 }
 }
}

In our example, the BlockMatrix class is only used as a utility wrapper to split the
whole matrix into blocks so as to benefit from data locality (each block
is contained by a different array).

We can parallelize the code by performing the multiplication of each pair of blocks
in a different node using the following code:

void BlockMatMul(BlockMatrix &A, BlockMatrix &B, BlockMatrix &C) {
 #pragma omp parallel
 #pragma omp single
 for (int i = 0; i < N / BS; ++i)
 for (int j = 0; j < N / BS; ++j) {
 float *BlockC = C.GetBlock(i, j);
 for (int k = 0; k < N / BS; ++k) {
 float *BlockA = A.GetBlock(i, k);
 float *BlockB = B.GetBlock(k,j);
 #pragma omp target depend(in: *BlockA, *BlockB) \
 depend(inout: *BlockC) \
 map(to: BlockA[:BS*BS], BlockB[:BS*BS]) \
 map(tofrom: BlockC[:BS*BS]) nowait
 for(int ii = 0; ii < BS; ii++)
 for(int jj = 0; jj < BS; jj++) {
 for(int kk = 0; kk < BS; ++kk)
 BlockC[ii + jj * BS] += BlockA[ii + kk * BS] * BlockB[kk + jj * BS];
 }
 }
 }
}

As we carry out the multiplication of each block in the node, we have to
send the block of matrix A, the block of matrix B as input
(map(to: BlockA[:BS*BS], BlockB[:BS*BS])), and the block of matrix C
as output and input (map(tofrom: BlockC[:BS*BS])). The
multiplication process depends on input blocks A and B
(depend(in: BlockA[0], BlockB[0])) and block C as output
(depend(inout: BlockC[0])).

It is also possible to optimize the code even more by using a second level of parallelism within each
node using the traditionnal parallel for directive as shown below:

void BlockMatMul(BlockMatrix &A, BlockMatrix &B, BlockMatrix &C) {
 #pragma omp parallel
 #pragma omp single
 for (int i = 0; i < N / BS; ++i)
 for (int j = 0; j < N / BS; ++j) {
 float *BlockC = C.GetBlock(i, j);
 for (int k = 0; k < N / BS; ++k) {
 float *BlockA = A.GetBlock(i, k);
 float *BlockB = B.GetBlock(k,j);
 #pragma omp target depend(in: *BlockA, *BlockB) \
 depend(inout: *BlockC) \
 map(to: BlockA[:BS*BS], BlockB[:BS*BS]) \
 map(tofrom: BlockC[:BS*BS]) nowait
 #pragma omp parallel for
 for(int ii = 0; ii < BS; ii++)
 for(int jj = 0; jj < BS; jj++) {
 for(int kk = 0; kk < BS; ++kk)
 BlockC[ii + jj * BS] += BlockA[ii + kk * BS] * BlockB[kk + jj * BS];
 }
 }
 }
}

The problem with this implementation is that the 3 blocks must be transmitted
between the head and worker processes for each target task without any possibility
for the runtime to improve the communication between the nodes.

To fix it, the input blocks can be sent previously using target data tasks
(target enter data map(...) depend(...) nowait) and the resulting blocks
retrieved back using opposite target data tasks
(target exit data map(from: ...) depend(...) nowait) at the end. In this case,
the OMPC scheduler and data manager will be able to optimize the mapping of the target tasks
on the worker processes and the communication between them. Here would be the resulting code:

void BlockMatMul(BlockMatrix &A, BlockMatrix &B, BlockMatrix &C) {
 #pragma omp parallel
 #pragma omp single
 {
 // Maps all matrices´ blocks asynchronously (as tasks).
 for (int i = 0; i < N / BS; ++i) {
 for (int j = 0; j < N / BS; ++j) {
 float *BlockA = A.GetBlock(i, j);
 #pragma omp target enter data map(to: BlockA[:BS*BS]) \
 depend(out: *BlockA) nowait
 float *BlockB = B.GetBlock(i, j);
 #pragma omp target enter data map(to: BlockB[:BS*BS]) \
 depend(out: *BlockB) nowait
 float *BlockC = C.GetBlock(i, j);
 #pragma omp target enter data map(to: BlockC[:BS*BS]) \
 depend(out: *BlockC) nowait
 }
 }

 for (int i = 0; i < N / BS; ++i)
 for (int j = 0; j < N / BS; ++j) {
 float *BlockC = C.GetBlock(i, j);
 for (int k = 0; k < N / BS; ++k) {
 float *BlockA = A.GetBlock(i, k);
 float *BlockB = B.GetBlock(k,j);
 // Submits the multiplication for the ijk-block
 // Data is mapped implicitly and automatically moved by the runtime
 #pragma omp target depend(in: *BlockA, *BlockB) \
 depend(inout: *BlockC)
 #pragma omp parallel for
 for(int ii = 0; ii < BS; ii++)
 for(int jj = 0; jj < BS; jj++) {
 for(int kk = 0; kk < BS; ++kk)
 BlockC[ii + jj * BS] += BlockA[ii + kk * BS] * BlockB[kk + jj * BS];
 }
 }
 }

 // Removes all matrices´ blocks and acquires the final result asynchronously.
 for (int i = 0; i < N / BS; ++i) {
 for (int j = 0; j < N / BS; ++j) {
 float *BlockA = A.GetBlock(i, j);
 #pragma omp target exit data map(release: BlockA[:BS*BS]) \
 depend(inout: *BlockA) nowait
 float *BlockB = B.GetBlock(i, j);
 #pragma omp target exit data map(release: BlockB[:BS*BS]) \
 depend(inout: *BlockB) nowait
 float *BlockC = C.GetBlock(i, j);
 #pragma omp target exit data map(from: BlockC[:BS*BS]) \
 depend(inout: *BlockC) nowait
 }
 }

 }
}

It is important to point out that every target tasks must use the first position
of the block as a dependency. As said earlier, this is compulsory for the runtime
to be able to keep track of the data used manage the communication between worker
processes correctly.

More examples

More examples are available here: OMPC examples [https://gitlab.com/ompcluster/ompc-examples].

Currently, the following examples are available:

	hello-world

	fibonacci

	reduce-sum

	matmul

	cholesky

Profiling

This document provides a cookbook on how to collect, process and analyze OMPC traces.

Collecting a trace

The OmpCluster runtime has built-in support for collecting execution traces in the JSON format. To enable it, simply export the following environment variable:

export OMPCLUSTER_PROFILE="/path/to/file_prefix"

A task graph in a DOT format also can be generated by exporting the environment variable:

export OMPCLUSTER_TASK_GRAPH_DUMP_PATH="/path/to/graph_file_prefix"

and then run your application normally. At the end of the execution, the runtime will create a couple of timeline files named <file_prefix>_<process_name>.json and two graph files named <graph_file_prefix>_graph_<graph_number>.dot. You should see one JSON file for each MPI process. Analyzing the traces separately is cumbersome but the OMPCBench [https://gitlab.com/ompcluster/ompcbench] tool can help you with that.

Merge timelines

Clone and install the OMPCBench tool in your machine and then follow the steps in the README [https://gitlab.com/ompcluster/ompcbench/-/blob/main/README] to install it in a virtualenv. After installing, you can merge the timeline of all the processes into one using the following command:

Run the following command inside the virtualenv:
ompcbench merge --no-sync # (Optional) Synchronize timelines disabled. The clocks may differ between processes, so by default the timelines are synchronized.
 --developer # (Optional) Generate a timeline for runtime developers (with more information and no filters applied).
 --ompc-prefix /path/to/file_prefix # Specify the common prefix or directory of the timelines to merge.
 --ompt-prefix /path/to/file_prefix # (Optional) Specify the common prefix or directory of the OmpTracing timelines to merge.
 --output tracing.json # (Optional) Merged timeline name. If not passed, default name is tracing.json

The file tracing.json will be created and you can proceed to the next stage of inspection. If the task graph file is in the traces folder, the timeline will contain task dependencies and identifiers.

Tip: Run ompcbench merge --help for explanations and more options.

Inspecting the trace

In order to view your trace in a proper timeline, you can navigate to the URL chrome://tracing in the Chrome Browser, click “Load” in the top-left corner and then open your merged timeline or just drag and drop the file into the window. You should now be seeing your application trace, including the runtime operations. An example timeline is presented below.

[image: _images/timeline-new.png]Timeline OMPC

The timeline points indicated by numbers represent as follows:

	Process separation: all threads below belongs to the referenced process.

	Thread separation: all events on the right belongs to the referenced thread.

	Arrow to hide events: used to decrease the height of the timeline, as events from that thread are compressed vertically. It is useful when users need to analyze events that are vertically distant on the timeline. The arrow next to the process name has a similar function, but completely hides the threads and events of that process.

	Timeline events: the label indicates what it represents on OMPC. All the colors are chosen by Chrome Tracing except for the events named “Task XX”, where events of the same color have the same source location and XX is the task id.

	Arrows that indicate relations between different events.

	Event information: when an event is selected, by clicking on it, this panel shows some event information. The first lines are information provided by the Chrome Tracing tool (as event start, duration, and arrows) and the args section is specific information about this event provided by OMPC.

	Provides information about any arrow from or to this event. If click on it, it will show the two events linked.

	If click on it, is possible to obtain a more clear view of the timeline by hiding the events arrows.

	Used to search for events by label or any of its arguments.

	Chrome Tracing tool to select events. This feature must be enabled to exhibit event info by clicking on it.

	Chrome Tracing tool to move across the timeline. It is useful when the timeline is zoomed in to a specific point.

	Chrome Tracing tool to zoom the timeline. It is useful to analyze events more precisely and see events that have a fine duration (like communication events). It is possible to zoom a specific event by pressing ‘f’ on the keyboard.

	Chrome Tracing tool to measure the duration between two events on the timeline. It is useful when events are in a different process.

OMPC Events

The OMPC Events of the user version are listed below:

	OMPC Runtime Execution: total duration of application.

	Target Enter (Nowait): represents a target enter data map (nowait) region or an entrance in a target data map region (nowait).

	Target Exit (Nowait)”: represents a target exit data map (nowait) region or an exit in a target data map region (nowait).

	Target (Nowait): target (nowait) region, represents an execution task in the head node.

	Execute / Target Execution or Task XX: total duration of task execution on worker nodes. If the graph file was provided, the name will be Task XX, where XX represents the task id, otherwise, the name will be “Execute / Target Execution”.

	Execute: total duration of task execution on head node.

	Alloc: when OMPC allocates data in the worker nodes. In the worker nodes this event is divided into a pair of Alloc / Begin and Alloc / End.

	Submit: In the head node, represents a data submission to worker nodes.
In the worker nodes, represent received data (from the head node through Submit event or from another worker through the Forward event) except in the developer version of the timeline (Forward events always have an associated Submit event representing a data submission). In the worker nodes, this event is divided into a pair of Submit / Begin and Submit / End.

	Delete: the data allocated on the worker nodes are freed. In the worker nodes, this event is divided into a pair of Delete / Begin and Delete / End.

	Retrieve: represents data received in the head node from a worker node. In the worker nodes, this event is divided into a pair of Retrieve / Begin and Retrieve / End.

	Forward: represents the head node sending a message to a worker to send data to another worker. The worker node receives the data by the Submit event. In the worker nodes, this event is divided into a pair of Forward / Begin and Forward / End.

	Variable names: if the user compiles the application with debug symbols, setting CMake flag to -DCMAKE_BUILD_TYPE=RelWithDebInfo, events that have variable names associated (e.g. Submit) will be nested to a variable name event.

OMPC Args

Some of the arguments that can appear in OMPC events are listed below:

	Origin: number of the process where the event was created.

	Destination: number of the process where the event was executed.

	Location: some events have a pair (origin and destination), the location indicates which of the pairs the event is on.

	mpi_tag: event id that is the same for the origin and destination pair.

	task_id: the identifier of the task that corresponds to the task graph.

	source_location: the file, line, and collum that the event was executed.
For the origin and destination args, the number represents the ids of head and worker nodes. 0 represents the head node, 1 represents the worker node 0, and so on.

OMPC Dependencies

The OMPC timeline has dependencies (arrows) that indicate relations between different events. These dependencies can be disabled to clear the timeline view, and the names presented in the image below represents:

[image: _images/timeline-arrow.png]Timeline Dependencies

	Communication: dependencies between event communication pairs (Begin and End) in the worker nodes.

	Tasks: data dependencies between tasks in the head nodes.

	Worker Process X: dependencies between Execute event in the Head node and Task events in the worker node X, where X is the id of the worker node.

OMPC Threads

	Head Node:

	Control Thread: responsible for scheduling the task graph.
Worker Thread: responsible for data communication and task creation.

	Worker Node:

	Data Event Handler: handles data communication events (receiving and submitting data).

	Execute Event Handler: handle the execution of tasks.

Filter usage

The Filter command is similar to the merge command, but with fewer options. You can pass an OMPC prefix and it will merge and automatically filter and synchronize the files. The advantage of using the filter is when the user already has a merged timeline in a developer version and needs to simplify it.

Run the following command inside the virtualenv:
ompcbench filter --ompc-prefix /path/to/file_prefix # Specify the common prefix or directory of the timelines to merge.
 --output tracing.json # (Optional) Merged timeline name. If not passed, default name is tracing.json

OmpTracing usage

OmpTracing tool extract information about the OpenMP runtime like the duration of loops, parallel regions, and tasks. The OMPC timeline collects only information about tasks created using the target compile directive, while OmpTracing provides information about the ones created using the task compile directive. OmpTracing can be used just by executing the following command, and merged with OMPC timeline by using ompt-prefix merge option:

export OMP_TOOL_LIBRARIES=/path/to/libomptracing.so

For more information about how to select events to be monitored, consult this [https://ompcluster.readthedocs.io/en/latest/omptracing.html] documentation.

Debugging

Debugging distributed application is always a complex task. Here is a set of advices and tips to help you in this journey.

Single Process Execution

Debugging OmpCluster programs might be a bit tricky since they run on multiple MPI processes, so it is usually a good idea to start by fixing the execution of the application on a single node without using mpirun.

Runtime Information

You can enable the debug message of the libomptarget runtime by setting the environment variable LIBOMPTARGET_INFO=-1. Just re-execute the application and you should see many messages in the execution log including some more error messages.

It is recommended to build your application with debugging information enabled, this will enable filenames and variable declarations in the information messages. Use the -g flag in Clang/GCC or configure CMake with -DCMAKE_BUILD_TYPE=Debug or -DCMAKE_BUILD_TYPE=RelWithDebInfo.

More information on how to use this environment variable is available [here][libomptarget-info].

Advanced Runtime Information

LIBOMPTARGET_DEBUG and OMPCLUSTER_DEBUG can also be used to enable additional logs. This feature is only available if libomptarget was built with -DOMPTARGET_DEBUG. The debugging output provided is intended for use by libomptarget and OMPC developers. More user-friendly output is presented when using LIBOMPTARGET_INFO.

The GNU Debugger (GDB)

GDB is one of the most popular terminal debuggers out there, even though it is very serial-oriented. In order to make the debugging endeavor smoother, be sure to enable debug information when compiler your program. Use the -g flag in Clang/GCC or configure CMake with -DCMAKE_BUILD_TYPE=Debug or -DCMAKE_BUILD_TYPE=RelWithDebInfo. When troubleshooting MPI applications, we usually launch one instance of GDB per MPI process. The following sections discuss some tools to aid you.

Here is a non-exhaustive table of useful GDB commands:

	Command

	Description

	run

	Run your program until it exits.

	continue, c

	Run your program until it hits a breakpoint.

	break file:line

	Set a breakpoint in a file followed by a line.

	backtrace, bt

	Show the stack trace.

	step, s

	Execute until next statment, stepping into function calls.

	next, n

	Execute until next statement, stepping over function calls.

	finish, fin

	Execute until current function returns.

	print expression

	Evaluates expression and print the result.

	info break

	List all breakpoints.

	info threads

	List all threads.

	info locals

	List all local variables.

The official GDB documentation [https://sourceware.org/gdb/onlinedocs/gdb/index.html#SEC_Contents] has a lot more commands and better descriptions, be sure to check it out.

The LLVM Debugger (LLDB)

The LLVM debugger is a more modern alternative to GDB, and as the name suggests, it is part of the LLVM compiler infrastructure. You must also compile your program with debug information enabled and then launch it with lldb -- <program> <args>. The commands are different from GDB, you can check a tutorial here [https://lldb.llvm.org/use/tutorial.html] and the equivalent commands from GDB here [https://lldb.llvm.org/use/map.html].

LLDB commands follow a well defined structure:

<noun> <verb> [-options [option-value]] [argument [argument...]]

Here is a non-exhaustive list:

	LLDB Command

	GDB Equivalent

	run, process launch

	run

	step, thread step-in

	step

	next, thread step-over

	step

	finish, thread step-out

	finish

	breakpoint set --file file --line line

	break file:line

	breakpoint list

	info break

	frame variable

	info locals

Debugging with TMPI

Note: This is the recommended way of debugging. Both TMPI and Tmux are installed in our containers such that you can debug your application everywhere with no setup required other than the container image itself.

TMPI (repo [https://github.com/Azrael3000/tmpi]) is a bash script that launches multiple MPI processes in a Tmux window and attaches one pane for each process. Combined with GDB, it is possible to debug distributed applications more or less easily. By default TMPI enables pane synchronization which means that the keys you type in one pane are also sent to the others.

TMPI usage is:

tmpi <nprocs> <commmand>

Where <nprocs> is the number of processes to be launched and <command> is the command you with to run. A more concrete example would be:

tmpi 4 gdb --args <program> <args>

Tip: If your command is really long or you need to set variables before execution you can write a bash script and then make TMPI invoke your script instead.

Tmux has a lot of interesting features, it is highly recommended that you take some time to learn how to use this tool properly. In the meantime, check this cheatsheet [https://tmuxcheatsheet.com/] out for quick reference.

Tip: Here [https://github.com/leiteg/dotfiles/blob/main/tmux.conf] is is @leiteg’s Tmux configuration, there are a bunch of shortcuts to make the experience of Tmux feel smoother. Feel free to use it as you like. If you are unsure what the options do ask him on Slack or simply man tmux. :wink:

Closing panes after execution

TPMI sets the Tmux option remain-on-exit on, which keeps the panes after the command finishes. To close the tmux window, you can use Ctrl + B, &, y. If you are exclusively using TMPI with GDB, you do not need remain-on-exit on, since gdb does not exit when the executable finishes. To unset this option, comment line 128 from TMPI: #tmux set-window-option -t ${window} remain-on-exit on &> /dev/null.

Unreproducible bugs

Note: This is not thoroughly tested, it may not work properly.

When working with parallel/distributed code, it is very common to run into a bug which does not always occur and consequently is really hard to reproduce and debug. A trick using TMPI and GDB can be used to run a command multiple times and quit GDB automatically if the program succeeds or leave it open otherwise.

How to do it: First you will need to change your TMPI script and comment line 128 which has the following contents: #tmux set-window-option -t ${window} remain-on-exit on &> /dev/null. This will configure your Tmux window to close when all the processes (in this case, GDB) exit. Next, we need to tell GDB itself to quit when everything runs fine. Use the following script that runs the same program repeatedly in order to catch one faulty execution:

for i in {1..100}; do
 tmpi 2 gdb -quiet -ex='!sleep 1' -ex='set confirm on' -ex=run -ex=quit --args ./program args
done

How it works: GDB flags work out the magic:

	Flag

	What it does

	-quiet

	Supress GDB startup message.

	-ex='!sleep 2'

	Introduce a small delay in GDB. This is needed because sometimes GDB exists before the TMPI script finishes executing and then the latter complains “window not found”.

	-ex='set confirm on'

	Confirm before doing dangerous operations. More specifically, confirms before quitting a program in progress.

	-ex=run

	Start running program immediately.

	-ex=quit

	Quit GDB right after running. If the program exits successfully, no confirmation is neeeded and GDB quits. If the program received a signal (error), then it hangs waiting for confirmation, just say “no” and you have your debug session.

Missing RTTI information

Sometimes GDB may not correctly parse the RTTI information embedded into clang debug binaries. In such cases, one can use LLDB to correctly debug an MPI program compiled by clang.

tmpi 4 lldb -- <program> <args>

Mind you that the commands accepted by LLDB may not directly match the ones supported by GDB. For more information, see the LLDB section.

Common Errors

Fatal error

You might get the following error which is quite common but not not very helpful:

Libomptarget fatal error 1: failure of target construct while offloading is mandatory

This error basically means the offloading of the computation failed.

In this case, it is usually helpful to enable the debug message of the libomptarget runtime using LIBOMPTARGET_INFO=-1. Then, re-run the application and you should see many messages in the execution log including some more interesting errors.

Undefined symbol

Target library loading error: /tmp/tmpfile_zSK0IW: undefined symbol: xxx"

This means xxx is used in the target region and should be declared as such, using the declare target pragmas.

Segfault error

In case you get a segfault, you can try to debug the program using TMPI and gdb. Using printf might also be useful.

Advanced Usage

Tuning

This documents gathers the strategies users can take advantage of when tuning and optimizing OMPC applications.

Threads

Currently, the number of threads from the head process must match the number of execute event handlers of all workers to get the best performance from the runtime. Our suggestion is to set the environment variable LIBOMP_NUM_HIDDEN_HELPER_THREADS to OMPCLUSTER_NUM_EXEC_EVENT_HANDLERS * num workers. This is a known limitation of our runtime and we are working on fixing it upstream (see here [https://reviews.llvm.org/D77609]) and in one of our next releases.

Scheduler

In order to map target tasks to devices (i.e. worker nodes), the OmpCluster runtime uses the HEFT [https://ieeexplore.ieee.org/document/993206] scheduling algorithm by default.

The Round-Robin scheduling algorithm is also available. This algorithm is fast to execute but generally produces bad schedules. Still, the users can experiment with it by setting the following environment variable:

export OMPCLUSTER_SCHEDULER="roundrobin"

Setting this variable will use round-robin instead of heft the next time your application is executed.

Blocking Scheduler

By default, the OMPC scheduler allows multiple target tasks to be mapped to a worker at a time. This is useful to use all cores of each worker, especially if it does not have parallel computations within the tasks.

However, it might not be the ideal behavior for all applications, especially when target tasks already perform parallel computations (e.g. a parallel for within a target nowait). In that case, the blocking behavior can be enabled for any scheduling strategy (round_robin, heft, etc) by setting the following environment variable:

export OMPCLUSTER_BLOCKING_SCHEDULER=1

When set, the scheduler behaves as a blocking scheduler: it only allow a single target task to be mapped to a worker ate a time. This is useful to avoid competition in using the hardware resources of the workers.

Tuning HEFT

HEFT is a heuristic-based list-scheduling algorithm that makes decisions based on:

	Computation cost: how many time units is required for executing a single task;

	Communication cost: how many time units for transferring data between two tasks.

Unfortunately, the runtime does not know have this information ahead of time and expects the user to provide them via environment variables. Take a look at the example below. The first variable, OMPCLUSTER_HEFT_COMP_COST indicates how long does it take to execute a task. Secondly, the variable OMPCLUSTER_HEFT_COMP_COEF specifies a coefficient in relation to the computation cost. For example, a coefficient of 2 indicates that communication costs twich as much as computation.
The actual units here (miliseconds, seconds, minutes) are not as important as the relationship between computation and communication cost.

Computation cost in time units (could be miliseconds, seconds, ...)
E.g. computation of a task takes 30 time units
export OMPCLUSTER_HEFT_COMP_COST="30"

Communication cost as a coefficient of computation cost
E.g. communication of a dependency takes 2x as much time as a computation.
export OMPCLUSTER_HEFT_COMP_COEF="2.0"

Tip: Adjusting the costs may required some experimenting and iteration from the user-side in order to find a good balance. Dumping the task graph (see next section) can also help here.

Note: The OmpCluster runtime does not yet support tasks and dependencies with different costs. If your application fits this category we suggest you set an average value to cover both cases.

Dumping the Task Graph

If you wish to inspect the final scheduled graph you can use the OMPCLUSTER_TASK_GRAPH_DUMP_PATH to specify a path where to dump using the GraphViz dot language.

Specify a path where the task graph should be dumped (required)
export OMPCLUSTER_TASK_GRAPH_DUMP_PATH="<path>/<file_prefix>"

Show the edge weights in the graph (optional)
export OMPCLUSTER_HEFT_DUMP_EDGE_LABEL=1

Dumping internal HEFT data

Note: This option is useful for developers who are looking to troubleshoot the execution of the algorithm itself. Reguler users can safely ignore this option.

The following environment variable will instruct the HEFT scheduler to dump its internal state before the application exists. This is useful if you are looking to inspect the EST, EFT, AST, AFT tables.

export OMPCLUSTER_HEFT_LOG="/path/to/heft.log"

Environment variables

This section describes the environment variables than can be used to tune the runtime.

OpenMP Target Runtime

Non-exhaustive list of the settings for the LLVM OpenMP Target runtime library.
The full list is available on the upstream website [https://openmp.llvm.org/docs/design/Runtimes.html].
Please notice some settings might differ since our version of LLVM is not synchronized with
the last version of LLVM.

LIBOMPTARGET_INFO

The variable controls whether or not the runtime provides additional information
during the execution. The output provided is intended for use by application
developers. It is recommended to build your application with debugging
information enabled, this will enable filenames and variable declarations in the
information messages. More information on how to use this environment variable
is available here [https://openmp.llvm.org//design/Runtimes.html#libomptarget-info].

LIBOMPTARGET_DEBUG

The variable controls whether or not debugging information will be displayed.
This feature is only available if libomptarget was built with
-DOMPTARGET_DEBUG. The debugging output provided is intended for use by
libomptarget developers.

LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD

LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD sets the threshold size for which the
libomptarget memory manager will handle the allocation. Any allocations larger
than this threshold will not use the memory manager and be freed after the
device kernel exits. Contrary to the other libomptarget plugins, the OmpCluster
runtime is using a Bump allocator with a default threshold value of 8MB. If
LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD is set to 0 the memory manager will be
completely disabled.

LIBOMP_NUM_HIDDEN_HELPER_THREADS

The variable configures the number of threads used by the OpenMP runtime to
offload target tasks. Those threads are called hidden helper threads. By
default, the number of hidden helper threads is 8.

Note: Currently, the number of hidden helper threads should match the total
number of execute event handlers to get the best performance.

OMPC Runtime

General settings of the OmpCluster runtime

OMPCLUSTER_PROFILE

The variable defines the path and file suffix used to dump the trace files
generated by the profiler. The output is a set of JSON files with the following
names path/filename_suffix + "_" + process_name + ".json".

There is no default value, if not set, the profiling is not performed and the
execution traces are simply not saved to any file.

OMPCLUSTER_PROFILE_LEVEL

It controls what profiling events that will be added to the generated trace.
Use -1 to print them all. Default value is 1 and should be sufficient for
most users.

OMPCLUSTER_DEBUG

Sets the level of OmpCluster debug messages. This feature is only available if
libomptarget was built with -DOMPTARGET_DEBUG. Default value is 0.

OMPCLUSTER_MPI_FRAGMENT_SIZE

Maximum buffer size sent in a single MPI message. If a buffer is larger than
this threshold, it is automatically splitted in separated messages. The
default value is 100000000 bytes (100 MiB).

OMPCLUSTER_NUM_EXEC_EVENT_HANDLERS

It controls the number of threads responsible for executing target regions
spawned per process. The default value is 1.

OMPCLUSTER_NUM_DATA_EVENT_HANDLERS

It controls the number of threads responsible for data-related events spawned
per process. The default value is 1.

OMPCLUSTER_EVENT_POLLING_RATE

Polling rate used by event handlers in microseconds. Small values reduce waiting
time between checks, but increases CPU usage. Default value is 1 us.

OMPCLUSTER_BCAST_STRATEGY

Sets how OmpCluster transfers data that must be broadcast (i.e. sent to all
nodes).

	Mode

	Description

	disabled

	Data on synchronous target data map regions will be sent to each device when needed by the memory management system.

	p2p

	Data on synchronous target data map regions will be sequentially sent to every device through peer-to-peer communication.

	mpibcast

	Data on synchronous target data map regions will be sent to every device using MPI_Bcast.

	dynamicbcast

	Data on synchronous target data map regions will be sent to every device using the Dynamic Broadcast algorithm.

Default value is disabled.

OMPCLUSTER_ENABLE_PACKING

If set to 1 enables communication events to be packed, while a value of 0 does not. When enabled, the runtime packs communication metadata and buffers that have less than OMPCLUSTER_PACKING_THRESHOLD bytes. Dafault value is 0.

OMPCLUSTER_PACKING_THRESHOLD

The value passed to OMPCLUSTER_PACKING_THRESHOLD defines the maximum size of the buffers that will be packed in a single MPI message. If OMPCLUSTER_PACKING_THRESHOLD=0 and OMPCLUSTER_ENABLE_PACKING=1, then only the communication metadata is packed. If OMPCLUSTER_ENABLE_PACKING is set to 0, OMPCLUSTER_PACKING_THRESHOLD is not used. Default value is 0.

OMPC Scheduler

Settings of the OmpCluster runtime specific to the task scheduler

OMPCLUSTER_SCHEDULER

Selects the strategy used by the scheduler to assign tasks to specific MPI
processes. Currently, there are three available options, described below.

	Scheduler

	Description

	roundrobin

	Dynamic round-robin: schedules task when executing them by continuously going over the list of processes

	graph_roundrobin

	Static round-robin: schedules task when creating them by continuously going over the list of processes

	heft

	Heterogeneous Earliest Finish Time (HEFT): more advanced heuristic that takes into account the communication time. See wikipedia [https://en.wikipedia.org/wiki/Heterogeneous_Earliest_Finish_Time] for more details.

Default value is heft.

OMPCLUSTER_BLOCKING_SCHEDULER

This variable is used to configure the blocking behavior of the OMPC scheduler.
A value of 0 enables multiple target regions (target tasks) to be executed at
the same time in parallel by each MPI process, and a value of 1 does not.
Default value is 0.

Please notice that the dynamic round-robin strategy will not assign a task to a
busy process (already executing a task) if the blocking behavior is enabled.

OMPCLUSTER_TASK_GRAPH_DUMP_PATH

Path used to dump the task graph generated by the scheduler, indicating to which
MPI rank each task was assigned. The output is a dot file.

There is no default value, if not set, the task graph is simply not saved to
any file.

HEFT parameters

Parameters used by the HEFT scheduler. Only used if OMPCLUSTER_SCHEDULER=heft.
Those parameters are especially useful since the runtime is not yet able to
predict the communication and computation time of the tasks.

OMPCLUSTER_HEFT_COMM_COEF

Coefficient of the communication cost. Having a higher coefficient means that
communication will have more weight in relation to computation. Default value is
1.

OMPCLUSTER_HEFT_COMP_COST

Default computation cost of tasks. Default value is 100.

OMPCLUSTER_HEFT_COMM_COST

Default communication cost of tasks. Default value is 1.

Fault Tolerance

Settings of the OmpCluster runtime specific to the fault tolerance.

OMPCLUSTER_FT_DISABLE

OMPCLUSTER_CP_USEVELOC

OMPCLUSTER_CP_EXECCFG

OMPCLUSTER_CP_TESTCFG

OMPCLUSTER_HB_TIMESTEP

OMPCLUSTER_HB_TIMEOUT

OMPCLUSTER_HB_PERIOD

OMPCLUSTER_CP_MTBF

OMPCLUSTER_CP_WSPEED

OMPC PLASMA

This library is an extension of the PLASMA library for distributed memory systems.

Building

To use OMPC PLASMA, we provide a docker image ompcluster/plasma-dev:lastest
containing a pre-compiled Clang/LLVM with all the OpenMP and MPI libraries
needed to compile and run OMPC PLASMA.

You can execute OMPC PLASMA on any computer using docker or Singularity.

To install OMPC PLASMA we use the following commands:

git clone https://gitlab.com/ompcluster/plasma.git
cd plasma/
mkdir build
cd build
export CC=clang
export CXX=clang++
export OpenBLAS_ROOT=/usr/local/include/openblas/
cmake ..
make -j$(nproc)

Usage

OMPC PLASMA should be run using parameters. To observe the parameters,
execute the following command:

./plasmatest --help

In general, OMPC PLASMA should be executed with the following parameters:

./plasmatest routine --dim=$dim --nrhs=$dim --nb=$nb --test=$test

These parameters represent:

	routine: This parameter represents the application of linear algebra.
Currently OMPC PLASMA supports four applications: spotrf, sgemm, ssyrk and
strsm.

	$dim: The matrix size.

	$nb: The block size. This number should be divisor of $dim.

	$test(y|n): Determine whether or not the results should be verified.

There are other parameters, which depend on each routine that the user wants to
execute.

Example

Here is a example how to run the OMPC PLASMA in a cluster using SLURM:

#!/bin/bash
#SBATCH --job-name=plasma-job
#SBATCH --output=plasma-output.txt
#SBATCH --nodes 3

module purge
module load mpich/4.0.2-ucx

OMPC settings
export OMPCLUSTER_NUM_EXEC_EVENT_HANDLERS=4
expsort LIBOMP_NUM_HIDDEN_HELPER_THREADS=8
export OMPCLUSTER_HEFT_COMM_COEF=0.00000000008
export OMPCLUSTER_HEFT_COMP_COST=20000000000

OpenMP settings
export OMP_NUM_THREADS=4
export OPENBLAS_NUM_THREADS=1

srun --mpi=pmi2 -n 3 singularity exec plasma-dev_latest.sif plasma/build/plasmatest spotrf --dim=1024 --nrhs=1024 --nb=256 --test=y

OMPC configurations depend on how the user executes the program in the cluster. In the
example, OMPC PLASMA runs on 2 worker nodes, each node will work with 4 threads.

OmpTracing

This tool can be used to trace the execution of an OpenMP (or OmpCluster)
application.

Usage

To enable OmpTracing you just need to set the OMP_TOOL_LIBRARIES environment
variable to the path of the OmpTracing library.

export OMP_TOOL_LIBRARIES=/path/to/libomptracing.so
./your-own-omp-program

If you use one of the container images provided by OmpCluster, OmpTracing
library is already provided in /opt/omptracing/lib/libomptracing.so, otherwise
you can compile it from its repository [https://gitlab.com/ompcluster/omptracing/].

After the execution of the program ends, OmpTracing should have produced two
files: a JSON file containing the tracing of the execution and a DOT file
describing the task graph produced by the OpenMP runtime.

Tracing

You can use Chrome browser as an graphical interface to see the tracing of the
program execution. Just open Chrome (or Chromium), enter chrome://tracing in
the address field. A new interface should appear where you can load the
omptracing.json file just as presented in the image below.

[image: _images/tracing.png]tracing

A timeline example is presented in the image below. An OmpTracing timeline
displays events, categories (that separate events), and extra information about
a selected event. The registered events are the horizontal colored bars (e.g.
the implicit_6 event indicated), the left panel separates the events by their
categories such as parallel region, thread region, and others. Each event has
its category or subcategory id that composes the event name, for example, the
implicit_6 event indicated has Tasks Level 0 category (left panel) and implicit
subcategory with 6 id (event name). The number in the task level category on the
left panel represents the level of the task parent tree. When an event is
selected, all the available information (args) is presented in the bottom
section. The selection of a specific event can be performed by clicking on the
event’s bar on the timeline. The categories are divided by threads (Process
Thread in the left panel) and the general categories are aligned in Process All.
The tracing category registers the beginning and the end of the application. In
the figure, the begin event is hidden because of the image zoom, and the end
event is circled.

[image: _images/timeline.png]timeline

The categories are explained below.

	Parallel Region: it marks the begin and the end of parallel regions. Each
region specifies an ID and the number of threads requested.

	Thread Region: it marks the begin and the end of thread regions. The
thread type is specified. See OMPT documentation [https://www.openmp.org/spec-html/5.0/openmpsu185.html#x233-11730004.4.4.10] to get more
informations.

	Tasks: it marks the begin and the end of tasks. The tasks are divided in
levels. A parent task is a task that created another one, and tasks of level
zero have no parent tasks. The level information is described in the label
section, as well as the parent task id and the task type. See
OMPT documentation [https://www.openmp.org/spec-html/5.0/openmpsu185.html#x233-11980004.4.4.18] to get more informations.

	Work Region: it marks the begin and the end of work regions like loop,
taskloop, sections, workshare, single regions and distribute regions and gave
information about it. See OMPT documentation [https://www.openmp.org/spec-html/5.0/openmpsu187.html#x236-12830004.5.2.5] to get more
informations.

	Implicit Task Region: it marks the begin and the end of implicit task
regions and gave your number of threads/teams. See OMPT
documentation [https://www.openmp.org/spec-html/5.0/openmpsu187.html#x236-13190004.5.2.11] to get more informations.

	Master Region: it marks the begin and the end of master regions. See
OMPT documentation [https://www.openmp.org/spec-html/5.0/openmpsu187.html#x236-13250004.5.2.12] to get more informations.

	Sync Region: it marks the begin and the end of sync regions like barrier
implicit/explicit, taskwait, taskgroup and reduction. See
OMPT documentation [https://www.openmp.org/spec-html/5.0/openmpsu187.html#x236-13310004.5.2.13] to get more informations.

Task Graph

OmpTracing also produce a dot file representing the task-dependency graph of the
OpenMP program. You can produce a PDF file to visualize it using the following
command:

dot -Tpdf graph.gv > graph.pdf

A graph example is presented in the image below. The graph shows the tasks
labeled with OmpTracing identifier numbers and the dependencies are represented
by arrows. Each task contains your specific begin time, end time, and elapsed
time.

[image: _images/graph.png]timeline

Configuration

OmpTracing permits to configure which information will be present in the timeline by passing a JSON configuration file like the model below. An updated example is available here [https://gitlab.com/ompcluster/omptracing/-/blob/master/config-example.json] in the OmpTracing repository. The monitored events array select which events will be tracing, the max tasks field represents the maximum number of tasks supported, the critical path field indicates if the critical path will be highlighted in the graph generated (the blue path in the graph example below), and the graph time field indicates if the time information will be presented in the graph. Just add or remove some events to the monitored events array to add or remove the tracing of this information.

{
 "monitored events": [
 "task",
 "task create",
 "thread",
 "parallel",
 "work",
 "implicit task",
 "master",
 "sync region",
 "taskwait"
],
 "max tasks":2048,
 "graph time":"yes",
 "critical path":"yes"
}

[image: _images/critical-path-graph.png]tracing

OmpTracing registers only those events defined in the config selector file or uses a default selection. There are two ways to pass a config selector file to OmpTracing:

	By assigning the file path to OMPTRACING_CONFIG_PATH environment variable;

	By placing the file with the name ”config.json” in the same folder as the application.

If OmpTracing can not read the file passed, it will use the default config selection.

Tagging

OmpTracing allows adding tagging on the parallel code by adding omptracing
header (omptracing.h) and find omptracing package on CMake. The functions
omptracingTagBegin and omptracingTagEnd permit you to choose the name
category (tag name) and the event name while the functions
omptracingTagEventBegin and omptracingTagEventEnd permit you to choose just
the event name and use a default OmpTracing tag name. See the example code
below.

 #include "omptracing.h"

 ...

 // Tag Name: Default
 // Event Name: first_computation
 omptracingTagEventBegin("first_computation");
 ...
 omptracingTagEventEnd("first_computation");

 // Tag Name: Example
 // Event Name: second_computation
 omptracingTagBegin("Example", "second_computation");
 ...
 omptracingTagEnd("Example", "second_computation");

The timeline generated is present in the image below.

[image: _images/tag-example.png]tracing

A more practical example is present in the next image. It shows a spotrf core
tagging of Plasma [https://icl.utk.edu/plasma/software/index.html] application. The marked tags are in the “Example”
category and it shows spotrf, strsm, ssyrk, and sgemm Plasma computation.

[image: _images/tag-plasma.png]tracing

Linking to OmpTracing library

Contrary to the timeline and the taskgraph which are activated through OMPT
environment variable, tagging requires to link the OmpTracing library in a more
tradiditionnal manner. This can be achieved using for example the following
CMake code:

find_package(omptracing CONFIG REQUIRED)
include_directories(${omptracing_INCLUDE_DIRS})

...

target_link_libraries(mytarget omptracing)

Index

 Creative Commons Legal Code

CC0 1.0 Universal

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
HEREUNDER.

Statement of Purpose

The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an “owner”) of an original work of
authorship and/or a database (each, a “Work”).

Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works (“Commons”) that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.

For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the “Affirmer”), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.

	Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights (“Copyright and
Related Rights”). Copyright and Related Rights include, but are not
limited to, the following:

i. the right to reproduce, adapt, distribute, perform, display,
communicate, and translate a Work;
ii. moral rights retained by the original author(s) and/or performer(s);
iii. publicity and privacy rights pertaining to a person’s image or
likeness depicted in a Work;
iv. rights protecting against unfair competition in regards to a Work,
subject to the limitations in paragraph 4(a), below;
v. rights protecting the extraction, dissemination, use and reuse of data
in a Work;
vi. database rights (such as those arising under Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation
thereof, including any amended or successor version of such
directive); and
vii. other similar, equivalent or corresponding rights throughout the
world based on applicable law or treaty, and any national
implementations thereof.

	Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer’s Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the “Waiver”). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer’s heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer’s express Statement of Purpose.

	Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer’s express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer’s Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
“License”). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer’s
express Statement of Purpose.

	Limitations and Disclaimers.

a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.
b. Affirmer offers the Work as-is and makes no representations or
warranties of any kind concerning the Work, express, implied,
statutory or otherwise, including without limitation warranties of
title, merchantability, fitness for a particular purpose, non
infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to
the greatest extent permissible under applicable law.
c. Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without
limitation any person’s Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary
consents, permissions or other rights required for any use of the
Work.
d. Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to
this CC0 or use of the Work.

readthedocs

 _images/block_multiplication.png
A11.B11 A11.B12

A11| A12 B11| B12 At2621 2822
. =
A21| A22 B21| B22 A21.B11 A21.812

A22.821 A22.B22

_images/critical-path-graph.png
0
Begin: 25.00
End: 48.00
Elapsed Time: 23.00

4
Begin: 11400
End: 137.00

Elapsed Time: 23.00

8
Begin: 20200
End: 223.00

Elapsed Time: 21.00

12
Begin: 289.00

End: 310.00
Elapsed Time: 21.00

1
Begin: 48.00

End: 70.00
Elapsed Time: 22.00

5
Begin
End: |
Elapsed T

9
Begin: 22400
End: 24500

Elapsed Time: 21.00

13
Begin: 310.00

End: 33200
Elapsed Time: 22.00

2
Begin: 70.00

End: 9200
Elapsed Time: 22.00

6
Begin: 158.00

End: 180.00
Elapsed Time: 22.00

10
Begin: 24500

End: 267.00
Elapsed Time: 22.00

14
Begin: 33200

End: 354.00
Elapsed Time: 22.00

3
Begin: 9200
End: 11400
Elapsed Time

7
Begin: 180.00

End: 20200
Elapsed Time: 22.00

11
Begin: 267.00

End: 289.00
Elapsed Time: 22.00

15
Begin: 35400

End: 375.00
Elapsed Time: 21.00

_images/tag-example.png
Jous

100

Flow events

Processes

View Options

Er

[0

oIS 8715 91l

_images/tag-plasma.png
Record || Save || Load | omptracing_27081json Fiow evens || Processes | View Options HE R
L

Loy 20w [Leoops L T

El

Tracing
Parallel Region
v Example

v Process Thread 0
Thread Region
v Tasks Level 0

Master Task
Sync Region
Tasks Level 1

v Process Thread 2

|

>

>

Thread Region
Tasks Level 0
Sync Region
Tasks Level 1

v Process Thread 1

>

Thread Region
Tasks Level 0
Sync Region
Tasks Level 1

v Process Thread 3

Thread Region
Tasks Level 0
Sync Region
Tasks I avel 1

| +

T

_images/graph.png
0
Begin: 76.64
End: 7679
Elapsed Time: 0.16

1

Begin: 76.65
End: 7677
Elapsed Tme: 0.12

13
Begin: 77.62
End: 77.63
Elapsed Time: 0.02

14

Begin: 77.62
End: 77.63
Elapsed Time: 0.01

12

Begin: 77.61
End: 77.63
Elapsed Tme: 0.02

2
Begin: 76.65
End: 77.00

Elapsed Time: 0.35

15
Begin: 77.62

End: 77.64
Elapsed Time: 0.01

_images/matrix-multiplication-good.gif
B

Loop 1:j: 0
Loop 2:i: 0
Loop 3: k: 0

_images/timeline-arrow.png

_images/timeline-new.png
- e
-

e T EL

" 1

o b

Ik

_images/timeline.png
Events Category

Event

SO SIeIS az1S 34

eleq aweld

Kouare nduj

Sualy

User Friendly Category

Requested |
parallelism:

stat 0069 ms Available Information
‘Wall Duration 0,003 ms
Args

nav.xhtml

 Table of Contents

 		
 Welcome to OmpCluster’s documentation!

 		
 Programming applications

 		
 Execute code on a target device

 		
 Manage the device data environment

 		
 Asynchronous target task

 		
 Task dependencies

 		
 Data environment

 		
 Asynchronous target data task

 		
 Basic Usage

 		
 Compile and run programs

 		
 Container

 		
 Cluster job manager execution

 		
 Existing images and configurations

 		
 Examples

 		
 First example

 		
 More examples

 		
 Profiling

 		
 Collecting a trace

 		
 Merge timelines

 		
 Inspecting the trace

 		
 OMPC Events

 		
 OMPC Args

 		
 OMPC Dependencies

 		
 OMPC Threads

 		
 Filter usage

 		
 OmpTracing usage

 		
 Debugging

 		
 Single Process Execution

 		
 Runtime Information

 		
 Advanced Runtime Information

 		
 The GNU Debugger (GDB)

 		
 The LLVM Debugger (LLDB)

 		
 Debugging with TMPI

 		
 Closing panes after execution

 		
 Unreproducible bugs

 		
 Missing RTTI information

 		
 Common Errors

 		
 Fatal error

 		
 Undefined symbol

 		
 Segfault error

 		
 Advanced Usage

 		
 Tuning

 		
 Threads

 		
 Scheduler

 		
 Blocking Scheduler

 		
 Environment variables

 		
 OpenMP Target Runtime

 		
 OMPC Runtime

 		
 OMPC Scheduler

 		
 HEFT parameters

 		
 OMPCLUSTER_HEFT_COMM_COEF

 		
 OMPCLUSTER_HEFT_COMP_COST

 		
 OMPCLUSTER_HEFT_COMM_COST

 		
 Fault Tolerance

 		
 OMPC PLASMA

 		
 Building

 		
 Usage

 		
 Example

 		
 OmpTracing

 		
 Usage

 		
 Tracing

 		
 Task Graph

 		
 Configuration

 		
 Tagging

 		
 Linking to OmpTracing library

_static/file.png

_images/tracing.png
Load your omptracing.jason here

_static/minus.png

_static/plus.png

